2,6-Diaryl-4,4-disubstituted-4*H*-thiopyran: Source for Spiro Heterocycles

Venkatapuram Padmavathi*, Akula Balaiah and Dandu Bhaskar Reddy

Department of Chemistry, Sri Venkateswara University, Tirupati -517 502, India Received October 22, 2001

The 1,5-diaryl-3,3-disubstituted-1,5-pentanedione on reaction with ammonium acetate, phosphorus pentoxide and phosphorus pentasulfide gave respective 1,4-dihydropyridine, 4*H*-pyran and 4*H*-thiopyran. Novel spiro heterocycles have been obtained by the cyclocondensation of 4*H*-thiopyran with hydrazine, hydroxylamine, urea and thiourea.

J. Heterocyclic Chem., 39, 649 (2002).

As a result of our sustained efforts in the search for new and versatile multi-functional reactive intermediates, recently we have reported the preparation of 1,5-diaryl-3,3-disubstituted-1,5-pentanediones 1 and 2 by the reaction of phenacyl bromide with dimethyl malonate and ethylcyano acetate [1]. The presence of dicarbonyl functionality in 1 and 2 enabled us to incorporate N, O and S as heteroatoms in them [2]. This gave scope for us to design and develop hitherto unknown spiro heterocycles by exploiting the gem diester or cyano ester groups of 1,4-dihydropyridine (3 and 4), 4H-thiopyran (5 and 6) and 4H-pyran (7 and 8). In fact, during the last decade we were actively involved in the syntheses of several spiro-heterocycles [3]. In further development of this synthetic strategy, we have now considered the reactivity of the 2,6-diaryl-4,4-disubstituted-4*H*-thiopyran(**5** and **6**) with hydrazine, hydroxylamine, urea and thiourea.

The synthetic method involves the reaction of 1,5-diaryl-3,3-dimethoxycarbonyl-1,5-pentanedione (1) or 1,5-diaryl-3-cyano-3-ethoxycarbonyl-1,5-pentanedione (2) with ammonium acetate in acetic acid, phosphorus pentasulfide in xylene and phosphorus pentoxide in dry benzene under reflux conditions to obtain 2,6-diaryl-4,4-dimethoxycarbonyl-1,4-dihydropyridine (3) or 2,6-diaryl-1,4-dihydropyridine (3) or 2,6-diar

4-cyano-4-ethoxycarbonyl-1,4-dihydropyridine (4), 2,6diaryl-4,4-dimethoxycarbonyl-4H-thiopyran (5) or 2,6diaryl-4-cyano-4-ethoxycarbonyl-4H-thiopyran (6) and 2,6-diaryl-4,4-dimethoxycarbonyl-4H-pyran (7) or 2,6diaryl-4-cyano-4-ethoxycarbonyl-4H-pyran (8) respectively (see Scheme 1 and Table 1). Displacement of the oxygen atom in 7 or 8 on treatment with excess phosphorus pentasulfide in boiling xylene also gave 5 or 6. The absence of carbonyl absorption (ArCO) around 1690 in IR spectra of 3-8 indicated their formation. Further 3 or 4 showed a band around 3350-3450 for (NH). The ¹H NMR spectra of 3-8 showed a singlet in the region 5.22 - 5.86, which accounts for C₃-H and C₅-H protons. However in case of 3 and 4 a singlet was observed around 9.02 - 9.20 for NH which disappeares on deuteration. The ¹³C NMR spectra of **3-8** exhibited resonance signals at 142.15 – 152.28 (C_2 and C_6), 91.78 – 120.54 (C_3 and C_5) and 41.24 – 45.67 (C₄) which also support their structures (Table 3). The cyclocondensation of 5 with hydrazine, hydroxylamine, urea and thiourea in the presence of sodium methoxide resulted in the formation of 7,9-diaryl-8-thia-2,3-diaza-spiro[4,5]deca-6,9-diene-1,4-dione (9), 7,9diaryl-2-oxa-8-thia-3-aza-spiro[4,5]deca-6,9-diene-1,4dione (10), 8,10-diaryl-9-thia-2,4-diaza-spiro[5,5]undeca-

Ar a) C₆H₅, b) 4-OMeC₆H₄, c) 4-ClC₆H₄

(11.28)

9.60

(9.49)

9.41

(9.58)

(4.08)

4.38

(4.48)

2.94

(2.88)

Table 1
Physical Properties for Compounds **3-8**

Table 2
Physical Properties for Compounds 9-16

Comp.	M.P	Yield	Molecular formula	Calcd. (Found) %			Comp.	Comp. M.P		Molecular formula Calcd. (Fo		d. (Foun	d) %
•	(°C)	(%)	(Molecular weight)	C	Н	N	г	(°C)	(%)	(Molecular weight)	C	Н	N
										,			
3a	168-169	68	$C_{21}H_{19}NO_4$	72.19	5.48	4.01	9a	245-247	68	$C_{19}H_{14}N_2O_2S$	68.24	4.22	8.38
			349.38	(72.33)	(5.54)	(3.97)				334.39	(68.10)	(4.12)	(8.23)
3b	182-183	71	$C_{23}H_{23}NO_6$	67.47	5.66	3.42	9b	238-240	64	$C_{21}H_{18}N_2O_4S$	63.94	4.60	7.10
	4.40.4.40	- 1	409.43	(67.25)	(5.78)	(3.57)				394.44	(64.15)	(4.51)	(7.22)
3c	148-149	64	$C_{21}H_{17}Cl_2NO_4$	60.30	4.10	3.35	9c	229-231	59	$C_{19}H_{12}Cl_2N_2O_2S$	56.59	3.00	6.94
	150 150		418.27	(60.43)	(4.16)	(3.19)				403.28	(56.70)	(2.93)	(6.78)
4a	152-153	66	$C_{21}H_{18}N_2O_2$	76.34	5.49	8.48	10a	199-200	69	$C_{19}H_{13}NO_3S$	68.04	3.91	4.18
41-	170 171	60	330.38	(76.50)	(5.53)	(8.29)				335.37	(68.26)	(3.84)	(4.31)
4b	170-171	69	$C_{23}H_{22}N_2O_4$	70.75	5.68	7.17	10b	211-212	61	$C_{21}H_{17}NO_5S$	63.79	4.33	3.54
4-	122 122	<i>(</i> 2	390.43	(70.62)	(5.72)	(7.29)				395.43	(63.56)	(4.40)	(3.63)
4c	132-133	62	$C_{21}H_{16}Cl_2N_2O_2$	63.17	4.04	7.02	10c	185-186	70	$C_{19}H_{11}C_{12}NO_3S$	56.45	2.74	3.46
- -	101 102	40	399.27	(63.08)	(4.12)	(7.13)				404.26	(56.53)	(2.70)	(3.38)
5a	181-182	40 57*	$C_{21}H_{18}O_4S$	69.83	4.95	-	11a	280-282	55	$C_{20}H_{14}N_2O_3S$	66.28	3.89	7.73
5b	192-194	35	366.43	(69.70) 64.77	(5.02) 5.20					362.42	(66.38)	(3.97)	(7.63)
30	192-194		$C_{23}H_{22}O_6S$			-	11b	286-288	58	$C_{22}H_{18}N_2O_5S$	62.55	4.29	6.63
5 0	169 160	51*	426.48	(64.66)	(5.07)	-				422.45	(62.75)	(4.36)	(6.70)
5c	168-169	38 59*	C ₂₁ H ₁₆ Cl ₂ O ₄ S 435.32	57.94		-	11c	274-276	51	$C_{20}H_{12}Cl_2N_2O_3S$	55.70	2.80	6.49
60	150 150	42		(57.84) 72.59	(3.79)	4.03				431.29	(55.54)	(2.87)	(6.35)
6a	158-159	62*	C ₂₁ H ₁₇ NO ₂ S 347.43		4.93		12a	282-284	60	$C_{20}H_{14}N_2O_2S_2$	63.47	3.73	7.40
6b	172-173	39	C ₂₃ H ₂₁ NO ₄ S	(72.42) 67.79	(4.97) 5.19	(4.16) 3.43				378.46	(63.55)	(3.65)	(7.50)
OD	1/2-1/3	50*	$C_{23}\Pi_{21}NO_{4}S$ 407.48	(67.92)			12b	277-279	59	$C_{22}H_{18}N_2O_4S_2$	60.26	4.14	6.39
60	146-147			60.58	(5.06) 3.63	(3.55)		2 50 250		438.52	(60.14)	(4.24)	(6.27)
6c	140-147	45 52*	C ₂₁ H ₁₅ Cl ₂ NO ₂ S 416.32	(60.73)	(3.72)	3.36 (3.47)	12c	268-270	57	$C_{20}H_{12}Cl_2N_2O_2S_2$	53.70	2.70	6.26
7a	143-144	65		71.99	5.18	` /				447.36	(53.88)	(2.65)	(6.37)
/a	145-144	03	C ₂₁ H ₁₈ O ₅ 350.36	(71.81)	(5.12)	-	13a	210-211	63	$C_{19}H_{15}N_3OS$	68.45	4.53	12.60
7b	151-152	72	$C_{23}H_{22}O_7$	67.31	5.40	_	401	245 245		333.40	(68.58)	(4.44)	(12.75)
7.0	131-132	12	$C_{23}\Pi_{22}G_7$ 410.41	(67.50)	(5.47)	_	13b	245-247	54	$C_{21}H_{19}N_3O_3S$	64.10	4.87	10.68
7c	175-176	69	$C_{21}H_{16}Cl_2O_5$	60.16	3.85	_	12	222 224	60	393.46	(64.15)	(4.80)	(10.80)
70	173-170	09	$C_{21}\Pi_{16}CI_{2}O_{5}$ 419.25	(60.28)	(3.90)	-	13c	233-234	62	$C_{19}H_{13}Cl_2N_3OS$	56.73	3.26	10.44
8a	132-133	78	$C_{21}H_{17}NO_3$	76.12	5.17	4.23	14.	100 100	<i></i>	402.29	(56.59)	(3.36)	(10.35)
ou	132 133	70	331.36	(76.37)	(5.10)	(4.33)	14a	182-183	65	$C_{19}H_{14}N_2O_2S$	68.24	4.22	8.38
8b	149-150	75	$C_{23}H_{21}NO_5$	70.58	5.41	3.58	14b	169-170	<i>c</i> 0	334.39	(68.09)	(4.17)	(8.51)
OD	117 150	7.5	391.41	(70.77)	(5.36)	(3.69)	140	109-170	60	$C_{21}H_{18}N_2O_4S$	63.94	4.60	7.10
8C	135-136	71	C ₂₁ H ₁₅ Cl ₂ NO ₃	63.02	3.78	3.50	14C	195-196	58	394.44	(63.71) 56.59	(4.56)	(7.23) 6.95
00	133 130	, 1	400.25	(62.90)	(3.85)	(3.32)	140	193-190	36	$C_{19}H_{12}Cl_2N_2O_2S$			
			100.25	(02.70)	(3.03)	(3.32)	15a	266-268	65	403.28	(56.74)	(3.07) 4.18	(6.83)
* Yield	s obtained	in metho	od 2.				13a	200-208	65	$C_{20}H_{15}N_3O_2S$	66.46	(4.27)	11.63
11010	. Journey						15%	272 274	60	361.41	(66.65)	. ,	(11.72)
							15b	272-274	69	$C_{22}H_{19}N_3O_4S$	62.69	4.54	9.97
= 40		a =	/44\	0 11			150	291-293	66	421.47	(62.77) 55.82	(4.59) 3.05	(9.85) 9.77
			one (11) and 8,1	•			15c	291-293	66	$C_{20}H_{13}Cl_2N_3O_2S$			
thia-2	2,4-diaza	-spiro[[5,5]undeca-7,10-	diene-1.	5-dion	e (12)	16a	257-259	72	430.31	(55.66)	(2.98)	(9.81)
		-	hama 2) In a sim				10a	231-239	72	$C_{20}H_{15}N_3OS_2$	63.64	4.01	11.13

16b

16c

294-296

281-283

68

70

thia-2,4-diaza-spiro[5,5]undeca-7,10-diene-1,5-dione (12) respectively (see Scheme 2). In a similar way the reaction of **6** in the presence of sodium ethoxide furnished 4-amino-7,9-diaryl-8-thia-2,3-diazaspiro[4,5]deca-3,6,9-trien-1-one (13), 4-amino-7,9-diaryl-2-oxa-8-thia-3-azaspiro[4,5]deca-3,6,9-trien-1-one (14), 5-amino-3-hydroxy-8,10-diaryl-9-thia-2,4-diazaspiro[5,5]undeca-2,4,7,10-tetraen-1-one (15) and 5-amino-3-mercapto-8,10-diaryl-9-thia-2,4-diaza-spiro[5,5]undeca-2,4,7,10-teraen-1-one (16) (see Scheme 3 and Table 2). The IR spectra of **9-16** exhibited absorption bands in the region 1495-1510 (C=S) [4], 1655-1725 (*CO*NH), 1745-1770 (*CO*-O), 3300-3440 (OH) and 3100-3310 (CONH, and NH₂). The absorption for the SH group generally appears as a weak band around 2550-2600 [5], however this is not observed for our com-

pounds. The ¹H NMR spectra of all these compounds

showed singlets at 1.41-1.42 (SH), 5.20-5.67 (C_6 -H and C_{10} -H, C_7 -H and C_{11} -H) and 8.88-10.22 (NH₂, NH and OH). The δ_C values obtained in their ¹³C NMR spectra also support the structures (Table 4).

377.48

 $C_{22}H_{19}N_3O_3S_2$

437.53

 $C_{20}H_{13}Cl_2N_3OS_2$

446.37

(63.54)

60.39

(60.57)

53.81

(53.70)

In conclusion, interesting spiro heterocycles were conveniently prepared by a straightforward successfully established method from simple substrates such as phenacyl bromide and active methylene compounds.

Table 3 Spectroscopic Data of Compounds **3-8**

Compd.	¹ H NMR	¹³ C NMR
	δ (CDCl ₃), ppm	δ (CDCl ₃), ppm
3a	3.82 (s, 6H, CO ₂ CH ₃), 5.24 (s, 2H, C ₃ and C ₅ -H), 7.20-	$45.21 (C_4)$, $52.35 (CO_2CH_3)$, $119.11 (C_3 and C_5)$,
	7.74 (m, 10H, ArH), 9.03 (s, 1H, NH Exch. with D ₂ O)	142.15 (C ₂ and C ₆), 173.25 (COOCH ₃)
3b	3.62 (s, 6H, Ar-OCH ₃), 3.83 (s, 6H, CO ₂ CH ₃), 5.29 (s, 2H, C ₃ and	
	C_5 -H), 7.19-7.75 (m, 8H, ArH), 9.22 (s, 1H, NH Exch. with D_2 O)	
3c	3.83 (s, 6H, CO ₂ CH ₃), 5.22 (s, 2H, C ₃ and C ₅ -H), 7.22-	45.62 (C ₄), 52.41 (CO ₂ CH ₃), 119.27 (C ₃ and C ₅), 142.35
	7.75 (m, 8H, ArH), 9.13 (s, 1H, NH Exch. with D ₂ O)	$(C_2 \text{ and } C_6), 173.28 (COOCH_3)$
4 a	1.42 (t, 3H, -OCH ₂ CH ₃), 4.36 (q, 2H, -OCH ₂ CH ₃), 5.32 (s, 2H, C ₃	14.21 (OCH ₂ CH ₃ , 45.23 (C ₄), 63.55 (-OCH ₂ CH ₃), 113.25 (CN),
	and C_5 -H), 7.24-7.75 (m, 10H, ArH), 9.20 (s, 1H, NH Exch. with D_2O)	120.24 (C ₃ and C ₅), 142.21 (C ₂ and C ₆), 169.48 (COOCH ₂ CH ₃)
4b	1.44 (t, 3H, -OCH ₂ CH ₃), 3.57 (s, 6H, Ar-OCH ₃), 4.35 (q, 2H,	14.19 (OCH ₂ CH ₃), 45.27 (C ₄), 51.62 (Ar-OCH ₃), 63.58
	$-OCH_{2}CH_{3}$), 5.38 (s, 2H, C_{3} and C_{5} -H), 7.23-7.75 (m, 8H, ArH,	(-OCH ₂ CH ₃), 113.54 (CN), 120.54 (C ₃ and C ₅), 142.28 (C ₂
	9.06 (\overline{s} , 1H, NH exch. with D ₂ O)	and C ₆), 169.00 (COOCH ₂ CH ₃)
4c	1.41 (t, 3H, -OCH ₂ CH ₃), 4.36 (q, 2H, -OCH ₂ CH ₃), 5.33 (s, 2H,	
	C ₃ and C ₅ -H), 7.24-7.75 (m, 8H, ArH), 9.11 (s, 1H, NH exch.	
-	with D ₂ O)	45 40 (C) 50 51 (CO (CL) 110 22 (C) 1 C) 145 17
5a	3.78 (s, 6H, CO ₂ CH ₃), 5.84 (s, 2H, C ₃ and C ₅ -H), 7.19-7.75	45.49 (C ₄), 52.51 (CO ₂ CH ₃), 110.23 (C ₃ and C ₅), 145.17
5b	(m, 10H, ArH) 3.61 (s, 6H, Ar-O <i>CH</i> ₃), 3.82 (s, 6H, CO ₂ <i>CH</i> ₃), 5.86 (s, 2H, C ₃	(C ₂ and C ₆), 171.29 (COOCH ₃) 45.57 (C ₄), 52.56 (CO ₂ CH ₃), 51.72 (Ar-OCH ₃), 110.77
30	and C_5 -H), 7.22-7.75 (m, 8H, ArH)	(C ₃ and C ₅),145.61 (C ₂ and C ₆), 171.98 (COOCH ₃)
5c	3.79 (s, 6H, CO ₂ CH ₃), 5.82 (s, 2H, C ₃ and C ₅ -H), 7.20-7.75	(C ₃ and C ₅),143.01 (C ₂ and C ₆), 171.30 (COOCH ₃)
50	(m, 8H, ArH)	
6a	1.43 (t, 3H, -OCH ₂ CH ₃), 4.37 (q, 2H, -OCH ₂ CH ₃), 5.77 (s,	14.68 (OCH ₂ CH ₃), 45.67 (C ₄), 63.65 (-OCH ₂ CH ₃), 110.82 (C ₃
· ·	2H, C ₃ and C ₅ -H), 7.21-7.75 (m, 10H, ArH)	and C_5), 113.61 (CN), 151.53 (C_2 and C_6), 168.89 (COOCH ₂ CH ₃)
6b	1.43 (t, 3H, -OCH ₂ CH ₃), 3.62 (s, 6H, Ar-OCH ₃), 4.38 (q, 2H,	377 ((
	$-OCH_2CH_3$), 5.75 (s, 2H, C_3 and C_5 -H), 7.20-7.75 (m, 8H, ArH)	
6c	1.41 (t, 3H, -OCH ₂ CH ₃), 4.36 (q, 2H, -OCH ₂ CH ₃), 5.75	14.58 (OCH ₂ CH ₃), 45.66 (C ₄), 63.67 (-OCH ₂ CH ₃), 110.81 (C ₃
	(s, 2H, C ₃ and C ₅ -H), 7.21-7.76 (m, 8H, ArH)	and C ₅), 113.58 (CN), 152.28 (C ₂ and C ₆), 168.57 (COOCH ₂ CH ₃)
7a	3.80 (s, 6H, CO ₂ CH ₃), 5.76 (s, 2H, C ₃ and C ₅ -H), 7.25-7.75	41.52 (C ₄), 53.21 (CO ₂ CH ₃), 93.72 (C ₃ and C ₅), 149.98 (C ₂
	(m, 10H, ArH)	and C ₆), 170.18 (COOCH ₃)
7 b	3.62 (s, 6H, Ar-OCH ₃), 3.83 (s, 6H, CO ₂ CH ₃), 5.72 (s, 2H,	
	C ₃ and C ₅ -H), 7.28-7.75 (m, 8H, ArH)	
7c	3.81 (s, 6H, CO ₂ CH ₃), 5.75 (s, 2H, C ₃ and C ₅ -H), 7.29-7.74	41.95 (C ₄), 53.26 (CO ₂ CH ₃), 91.78 (C ₃ and C ₅), 149.00 (C ₂
	(m, 8H, ArH)	and C ₆), 169.97 (COOCH ₃)
8a	1.40 (t, 3H, -OCH ₂ CH ₃), 4.35 (q, 2H, -OCH ₂ CH ₃), 5.62 (s,	14.18 (OCH ₂ CH ₃), 41.08 (C ₄), 63.54 (-OCH ₂ CH ₃), 94.05 (C ₃
	2H, C ₃ and C ₅ -H), 7.24-7.77 (m, 10H, ArH)	and C ₅), 112.80 (CN), 151.48 (C ₂ and C ₆), 167.82 (COOCH ₂ CH ₃)
8b	1.43 (t, 3H, -OCH ₂ CH ₃), 3.59 (s, 6H, Ar-OCH ₃), 4.33 (q, 2H,	
	-O <i>CH</i> ₂ CH ₃), 5.65 (s, 2H, C ₃ and C ₅ -H), 7.22-7.74 (m, 8H, ArH)	11.17 (OGY GY) 11.01 (G) (O 70 (O 70))))))))))))))))))))))))))))))))
8c	1.39 (t, 3H, -OCH ₂ CH ₃), 4.38 (q, 2H, -OCH ₂ CH ₃), 5.64 (s, 2H,	14.15 (-OCH ₂ CH ₃), 41.24 (C ₄), 63.56 (-OCH ₂ CH ₃), 94.90 (C ₃ and
	C ₃ and C ₅ -H), 7.21-7.72 (m, 8H, ArH)	C ₅), 112.77 (CN), 151.42 (C ₂ and C ₆), 168.11 (COOCH ₂ CH ₃)

Scheme 3

Scheme 3

Scheme 3

Scheme 3

NH₂NH₂NH₂•H₂O
NC
NaOMe

NH₂NH₂•H₂O
NaOMe

NAOMe

NAOMe

NH₂CONH₂
NAOMe

NH₂CSNH₂
NAOMe

Ar a) C_6H_5 , b) 4-OMe C_6H_4 , c) 4-Cl C_6H_4

16c

Table 4
Spectroscopic Data of Compounds 9-16

Compd	¹ H NMR	¹³ C NMR
compa	δ (DMSO-d ₆₎ , ppm	δ (DMSO-d ₆), ppm
	o (21125 d _b), pp.11	0 (21.150 d ₀), pp.11
9a	5.25 (s, 2H, C ₆ and C ₁₀ -H), 7.25-7.76 (m, 10H, ArH), 9.09	45.18 (C ₅), 117.22 (C ₆ and C ₁₀), 145.20 (C ₇ and C ₉),
	(s, 2H, NH Exch. with D ₂ O)	$169.48 (C_1 \text{ and } C_4)$
9b	3.62 (s, 6H, Ar-O <i>CH</i> ₃), 5.23 (s, 2H, C ₆ and C ₁₀ -H), 7.22-7.77	$45.01 (C_5)$, $51.68 (Ar-OCH_3)$, $117.29 (C_6 \text{ and } C_{10})$,
	(m, 8H, ArH), 9.17 (s, 2H, NH Exch. with D ₂ O)	$145.25 (C_7 \text{ and } C_9), 169.29 (C_1 \text{ and } C_4)$
9c	5.20 (s, 2H, C ₆ and C ₁₀ -H), 7.21-7.75 (m, 8H, ArH), 9.25	
	(s, 2H, NH Exch. with D ₂ O)	
10a	5.27 (s, 2H, C ₆ and C ₁₀ -H), 7.22-7.76 (m, 10H, ArH), 10.15	$46.22 (C_5)$, $117.39 (C_6 \text{ and } C_{10})$, $146.21 (C_7 \text{ and } C_9)$,
	(s, 1H, NH Exch. with D ₂ O)	169.23, 171.45 (C ₁ and C ₄)
10b	3.60 (s, 6H, Ar-O <i>CH</i> ₃), 5.31 (s, 2H, C ₆ and C ₁₀ -H), 7.28-7.87	46.84 (C ₅), 51.72 (Ar-OCH ₃), 117.98 (C ₆ and C ₁₀), 146.54
	(m, 8H, ArH), 10.18 (s, 1H, NH Exch. with D ₂ O)	$(C_7 \text{ and } C_9), 169.02, 171.51 (C_1 \text{ and } C_4)$
10c	5.52 (s, 2H, C ₆ and C ₁₀ -H), 7.21-7.76 (m, 8H, ArH), 10.22	
	(s, 1H, NH Exch. with D ₂ O)	
11a	5.61 (s, 2H, C ₇ and C ₁₁ -H), 7.38-7.76 (m, 10H, ArH), 9.01	$45.28 (C_6)$, $117.49 (C_7 \text{ and } C_{11})$, $146.99 (C_8 \text{ and } C_{10})$,
	(s, 2H, NH Exch. with D ₂ O)	159.82 (C ₃) 171.97 (C ₁ and C ₅)
11b	3.60 (s, 6H, Ar-O <i>CH</i> ₃), 5.63 (s, 2H, C ₇ and C ₁₁ -H), 7.22-7.81	
	(m, 8H, ArH), 8.88 (s, 2H, NH Exch. with D ₂ O)	
11c	5.61 (s, 2H, C ₇ and C ₁₁ -H), 7.21-7.75 (m, 8H, ArH), 8.89	
	(s, 2H, NH Exch. with D ₂ O)	
12a	5.53 (s, 2H, C ₇ and C ₁₁ -H), 7.22-7.76 (m, 10H, ArH), 9.12	$45.50 (C_6)$, $118.04 (C_7 \text{ and } C_{11})$, $147.02 (C_8 \text{ and } C_{10})$,
	(s, 2H, NH Exch. with D ₂ O)	159.87 (C ₃) 171.64 (C ₁ and C ₅)
12b	3.62 (s, 6H, Ar-O <i>CH</i> ₃), 5.55 (s, 2H, C ₇ and C ₁₁ -H), 7.21-	
	7.77 (m, 8H, ArH), 9.15 (s, 2H, NH Exch. with D ₂ O)	
12c	5.67 (s, 2H, C ₇ and C ₁₁ -H), 7.20-7.76 (m, 8H, ArH), 9.21 (s,	$45.42 (C_6)$, $116.93 (C_7 \text{ and } C_{11})$, $147.52 (C_8 \text{ and } C_{10})$,
	2H, NH Exch. with D ₂ O)	159.81 (C ₃) 171.59 (C ₁ and C ₅)
13a	5.49 (s, 2H, C ₆ and C ₁₀ -H), 7.20-7.75 (m, 10H, ArH), 9.32-	$43.98 (C_5)$, $119.14 (C_6 \text{ and } C_{10})$, $142.92 (C_7 \text{ and } C_9)$,
	9.36 (bs, 3H, NH ₂ , NH Exch.with D ₂ O)	165.02 (C ₄) 170.21 (C ₁)
13b	3.61 (s, 6H, Ar-O <i>CH</i> ₃), 5.44 (s, 2H, C ₆ and C ₁₀ -H), 7.21-7.75	
	(m, 8H, ArH), 9.41-9.45 (bs, 3H, NH ₂ , NH Exch. with D ₂ O)	
13c	5.43 (s, 2H, C ₆ and C ₁₀ -H), 7.22-7.76 (m, 8H, ArH), 9.40-	$44.26 (C_5)$, $118.91 (C_6 \text{ and } C_{10})$, $143.76 (C_7 \text{ and } C_9)$,
	9.43 (bs, 3H, NH ₂ , NH Exch. with D ₂ O)	164.12 (C ₄) 170.42 (C ₁)
14a	5.48 (s, 2H, C ₆ and C ₁₀ -H), 7.24-7.76 (m, 10H, ArH), 9.81	$45.55 (C_5)$, $119.12 (C_6 \text{ and } C_{10})$, $143.28 (C_7 \text{ and } C_9)$,
	(s, 2H, NH ₂ Exch. with D ₂ O)	165.49 (C ₄) 173.21 (C ₁)
14b	3.62 (s, 6H, Ar-O <i>CH</i> ₃), 5.47 (s, 2H, C ₆ and C ₁₀ -H), 7.25-	
	7.75 (m, 8H, ArH), 9.83 (s, 2H, NH ₂ Exch. with D ₂ O)	
14c	5.45 (s, 2H, C ₆ and C ₁₀ -H), 7.23-7.77 (m, 8H, ArH), 9.84	$45.51 (C_6), 119.92 (C_6 \text{ and } C_{10}), 143.91 (C_7 \text{ and } C_9),$
	(s, 2H, NH ₂ Exch. with D ₂ O)	164.91 (C ₄) 172.82 (C ₁)
15a	5.44 (s, 2H, C ₇ and C ₁₁ -H), 7.21-7.76 (m, 10H, ArH), 9.17	$43.23 (C_6)$, $117.62 (C_7 \text{ and } C_{11})$, $143.01 (C_8 \text{ and } C_{10})$,
	(s, 1H, OH Exch. with D_2O), 9.89 (s, 2H, NH ₂ Exch. with D_2O)	162.34 (C ₃) 178.45 (C ₁), 186.77 (C ₅)
15b	3.58 (s, 6H, Ar-O <i>CH</i> ₃), 5.46 (s, 2H, C ₇ and C ₁₁ -H), 7.21-7.75	43.27 (C ₆), 51.71 (Ar-OCH ₃) 117.31 (C ₇ and C ₁₁), 143.24
	(m, 8H, ArH), 9.16 (s, 1H, OH Exch. with D ₂ O), 9.80 (s, 2H,	$(C_8 \text{ and } C_{10}), 162.21 \ (C_3) 178.92 \ (C_1), 186.22 \ (C_5)$
	NH ₂ Exch. with D ₂ O)	
15c	5.48 (s, 2H, C ₇ and C ₁₁ -H), 7.20-7.76 (m, 8H, ArH), 9.19 (s,	
17	1H, OH Exch. with D ₂ O), 9.81 (s, 2H, NH ₂ Exch. with D ₂ O)	41.40.40.11.40.401.01.44.70.401.7
16a	1.43 (s, 1H, SH Exch with D_2O), 5.47 (s, 2H, C_7 and C_{11} -H),	$41.49 (C_6), 117.63 (C_7 \text{ and } C_{11}), 144.79 (C_8 \text{ and } C_{10}),$
4.0	7.21-7.77 (m, 10H, ArH), 9.62 (s, 2H, NH ₂ Exch. with D ₂ O)	162.91 (C ₃) 176.76 (C ₁), 179.96 (C ₅)
16b	1.45 (s, 1H, SH Exch. Exch. with D_2O), 3.60 (s, 6H, Ar-OCH ₃),	41.12 (C ₆), 51.69 (Ar-OCH ₃) 116.82 (C ₇ and C ₁₁), 145.31
	5.49 (s, 2H, C ₇ and C ₁₁ -H), 7.22-7.75 (m, 8H, ArH), 9.60 (s, 2H,	$(C_8 \text{ and } C_{10}), 163.54 (C_3) 176.93 (C_1), 180.54 (C_5)$
	NH ₂ Exch. with D ₂ O)	

EXPERIMENTAL

1.41 (s, 1H, SH Exch. with D₂O), 5.48 (s, 2H, C₇ and C₁₁-H),

7.20-7.75 (m, 8H, ArH), 9.64 (s, 2H, NH₂ Exch. with D₂O)

Melting points were determined on Mel-Temp apparatus and were uncorrected. The IR spectra were recorded on Perkin-Elmer 1600 FT-IR spectrometer using KBr disc. The wave numbers were in cm⁻¹. NMR spectra were recorded on a Bruker spectrospin 300 MHz spectrometer with TMS as an internal standard. The chemical shifts were measured in ppm. Purity of the com-

pounds were checked by TLC using silica gel `G' (BDH) and hexane-ethyl acetate as eluents.

2,6-Diaryl-4,4-dimethoxycarbonyl-1,4-dihydropyridine (3) or 2,6-diaryl-4-cyano-4-ethoxy- carbonyl-1,4-dihydropyridine (4).

A mixture of 10 mmoles of **1** or **2** and 1.5 g of ammonium acetate in 20 ml of acetic acid was refluxed for 2 hours. The reaction mixture was cooled and poured onto crushed ice. The products

obtained were recrystallized from methanol to give **3** or **4** (Table 1).

2,6-Diaryl-4,4-dimethoxycarbonyl-4*H*-pyran (**7**) or 2,6-Diaryl-4-cyano-4-ethoxycarbonyl-4*H*-pyran (**8**).

Compounds 1 or 2 (10 mmoles) were dissolved in 30 ml of dry benzene. To this 2 g of phosphorus pentoxide was added and refluxed for 8-10 hours using a Dean-Stark apparatus. The reaction mixture was filtered, washed with water, brine and dried (anhydrous Na₂SO₄). The solvent was evaporated *in vacuo*, and the resultant products were recrystallized from ethanol to furnished 7 or 8 (Table 1).

2,6-Diaryl-4,4-dimethoxycarbonyl-4*H*-thiopyran (**5**) or 2,6-diaryl-4-cyano-4-ethoxycarbonyl-4*H*-thiopyran (**6**).

Method 1.

To a solution of 10 mmoles of **1** or **2** in 25 ml of xylene, 15 mmoles of phosphorus pentasulfide was added and refluxed for 10 hours at 130-140 °C. The cooled contents were filtered to remove excess phosphorus pentasulfide. The solvent was removed under reduced pressure. The residue was recrystallized from ethanol to afford **5** or **6** (Table 1).

Method 2: Conversion of 7 or 8 to 5 or 6.

A solution of 5 mmoles of **7** or **8** in 20 m1 of xylene and 10 mmoles of phosphorus pentasulfide were refluxed for 3 hours and worked up as described above to give **5** or **6** (Table 1).

7,9-Diaryl-8-thia-2,3-diazaspiro[4,5]deca-6,9-diene-1,4-dione (9), 7,9-diaryl-2-oxa-8-thia-3-azaspiro[4,5]deca-6,9-diene-1,4-dione (10), 8,10-diaryl-9-thia-2,4-diazaspiro[5,5]undeca-7,10-diene-1,3,5-trione (11), 8,10-diaryl-3-thioxo-9-thia-2,4-diazaspiro[5,5]undeca-7,10-diene-1,5-dione (12).

A mixture of 10 mmoles of **5**, 15 mmoles of 80% hydrazine hydrate or 10 mmoles of either hydroxylamine hydrochloride, urea or thiourea as appropriate (Scheme 2) in 20 ml of methanol and 5 ml of 10% sodium methoxide was refluxed for 5-6 hours. The solution was cooled and poured onto crushed ice containing hydrochloric acid. The solid obtained was recrystallized from methanol to give **9-12** (Table 2).

4-Amino-7,9-diaryl-8-thia-2,3-diazaspiro[4,5]deca-3,6,9-trien-1-one (**13**), 4-amino-7,9-diaryl-2-oxa-8-thia-3-azaspiro[4,5]deca-3,6,9-trien-1-one (**14**), 5-amino-3-hydroxy-8,10-diaryl-9-thia-

2,4-diazaspiro[5,5]undeca-2,4,7,10-tetraen-1-one (**15**) and 5-amino-3-mercapto-8,10-diaryl-9-thia-2,4-diazaspiro[5,5]undeca-2,4,7,10-tetraen-1-one (**16**).

To a solution of 10 mmoles of 6 in 20 ml of ethanol, 15 mmoles of hydrazine hydrate or 10 mmoles of either hydroxylamine hydrochloride, urea or thiourea as appropriate (Scheme 3), 5 ml of 10% sodium ethoxide were added and refluxed for 6-8 hours, The cooled reaction mixture was poured onto crushed ice containing acetic acid. The solid separated was recrystallized from methanol to give **13-16** (Table 2).

Acknowledgements.

One of the authors (AB) wishes to thank CSIR, New Delhi, India for the award of Senior Research Fellowship, while another author (DBR) is grateful to UGC for the award of Emeritus Fellowship to him.

REFERENCES AND NOTES

- * Author to whom correspondence should be sent: e-Mail: bdandu@yahoo.com; Fax: 091-8574-50274.
- [1a] R. M. Ray and J. N.V. Ray, *J. Chem. Soc.*, **127**, 2721 (1925); [b] D. Girdina, R. Ballini, G. M. Cingaolani and B. K. Pietroni, *Tet. Lett.*, 249 (1979); [c] Padmavathi, A. Balaiah and D. Bhaskar Reddy, *Indian J. Chem.*, (Communicated).
- [2a] V. Baliah and T. Rangarajan, *J. Org. Chem.*, **26**, 970 (1961); [b] M. Schwarz, P. Trska and J. Kuthan, *Collect. Czech. Chem. Commun.*, **54**, 1854 (1989); [c] P. Sebek, S. Nespurek, R. Hrabal, M. Adamec and J. Kuthan, *J. Chem. Soc. Perkin Trans.* 2, 1301 (1992).
- [3a] D. Bhaskar Reddy, V. Padmavathi and P. V. Ramana Reddy, *Indian J.Chem.*, **31B**, 774 (1992); [b] D. Bhaskar Reddy, V. Padmavathi, B. Seenaiah and A. Padmaja, *Heteroatom Chem.*, **4**, 55 (1993); [c] D. Bhaskar Reddy, M. V. Ramana Reddy and V. Padmavathi, *Indian J. Chem.*, **37B**, 167 (1998); [d] D. Bhaskar Reddy, M. V. Ramana Reddy and V. Padmavathi, *Heteroatom Chem.*, **10**, 17 (1999); [f] D. Bhaskar Reddy, N. Chandrasekhar Babu and V. Padmavathi, *Heteroatom Chem.*, **12**, 113 (2001); [g] D. Bhaskar Reddy, N. Chandrasekhar Babu and V. Padmavathi, *J. Heterocyclic Chem.*, **38**, 769 (2001).
- [4] Y. Kook Hoh, K. Bang and H. Kim, J. Heterocyclic Chem., 38, 89 (2001).
- [5] R. M. Silverstein, G. C. Bassler and T. C. Morrill, "Spectometric Identification of Organic compounds" Fifth Edition, John Wiley & Sons, New York, New York.